Appendix F. Truss Design

All members are equal leg double angles, A36 steel with $E := 29000 \ ksi$, $F_y := 36 \ ksi$, $F_u := 58 \ ksi$, and Pin-Pin connection (k := 1.0).

Top Chord (Compression Member)

$$Pu_{max} \coloneqq 284.52 \ \textit{kip} \qquad \qquad L_T \coloneqq 8 \ \textit{ft}$$
$$L_C \coloneqq L_T \cdot \textit{k} = 8 \ \textit{ft}$$

Table 1. Determined using Table 4-8 from the Steel Construction Manual (SCM).

Selection	$Wt \phi Pnx$		ϕPny	Conn
	(plf)	(<i>kip</i>)	(kip)	
"2L6x6x7/16"	34.4	287	253	2
2L6x6x1/2	39.2	324	302	2
2L5x5x5/8	40	310	336	3

While 2L6x6x7/16 is the lightest, the ϕPny is not greater than Pu_{max} , thus the next member, 2L6x6x1/2 is selected.

Check Self Weight:

$$W := L_T \cdot Wt(1) = 0.314 \ kip$$

$$D := 1.2 \cdot W = 0.376 \ kip$$

$$NEWPu := D + Pu_{max} = 284.896 \ kip < \phi Pny(1) = 302 \ kip$$
 OK

Spacing:

$$a \coloneqq \frac{L_T}{Conn(1)+1} = 32 \ in$$

Slenderness (E2): $r_{min} = 2.63$ in

$$\frac{L_T}{r_{min}}$$
 = 36.502 < 200 OK

... Top Chord Member Selected: 2L6x6x1/2

Bottom Chord (Tension Member)

$$\begin{array}{ll} Pu_{max} \coloneqq 303.51 \ \textit{kip} & L_B \coloneqq 8 \ \textit{ft} \\ \\ MIN_{Ag} \coloneqq \frac{Pu_{max}}{0.9 \cdot F_y} = 9.368 \ \textit{in}^2 & \frac{MIN_{Ag}}{2} = 4.684 \ \textit{in}^2 \end{array}$$

Using Table 1-15 and knowing the area of the double angle must be greater than the minumum gross area, a 2L4x4x3/4 was selected with an $Ag = 10.9 \ in^2$

$$\frac{\text{TM Yielding (D2-1):}}{\phi Pn_y \coloneqq 0.9 \cdot F_y \cdot Ag = 353.16 \text{ kip}} > Pu_{max} = 303.51 \text{ kip} \qquad \text{OK}$$

TM Rupture (D2-2):

$$Ae := Ag \cdot 0.75 = 8.175 \ in^2$$

 $\phi Pn_r := 0.75 \cdot F_u \cdot Ae = 355.613 \ kip > Pu_{max} = 303.51 \ kip$ OK

Slenderness (E2):
$$r_{min} \coloneqq 1.8$$
 in

$$\frac{L_B}{r_{min}}$$
 = 53.333 < 300 OK

... Bottom Chord Member Selected: 2L4x4x3/4

Vertical Chord (Compression Member)

$$Pu_{max} \coloneqq 18.196 \ kip$$
 $L_V \coloneqq 4 \ ft$
 $L_C \coloneqq L_V \cdot k = 4 \ ft$

Table 2. Determined using Table 4-8 from the Steel Construction Manual (SCM).

$$\begin{array}{ccccccc} Selection & Wt & \phi Pnx & \phi Pny & Conn \\ & & (plf) & (kip) & (kip) \\ \hline & & \\ \hline & & \\ \end{array}$$

Since 2L2x2x1/8 is the lightest double angle member which still has a greater $\phi Pn\,$ than Pu_{max} , it is selected.

Check Self Weight:

$$W := L_V \cdot Wt = 0.013 \ kip$$

$$D := 1.2 \cdot W = 0.016 \ kip$$

$$NEWPu := D + Pu_{max} = 18.212 \ kip \qquad < \phi Pny = 21.5 \ kip$$

Spacing:

$$a \coloneqq \frac{L_V}{Conn+1} = 12 \text{ in}$$

Slenderness (E2): $r_{min} = .961$ in

$$\frac{L_V}{r_{min}}$$
 = 49.948 < 200 OK

... Vertical Chord Member Selected: 2L2x2x1/8

Diagonal Chord

Since there are both compression and tension members in this chord, both are designed and and redesigned using the opposites selected member.

Tension Member

$$Pu_{max} := 148.32 \ kip$$

 $MIN_{Ag} := \frac{Pu_{max}}{0.9 \cdot F_y} = 4.578 \ in^2$

Using Table 1-15 and knowing the area of the double angle must be greater than the minumum gross area, a 2L4x4x5/16 was selected with an $Ag := 4.8 \ in^2$

$$\frac{\text{TM Yielding (D2-1):}}{\phi Pn_y := 0.9 \cdot F_y \cdot Ag = 155.52 \text{ } kip } > Pu_{max} = 148.32 \text{ } kip \text{ OK}$$

TM Rupture (D2-2):

$$Ae := Ag \cdot 0.75 = 3.6 \ in^2$$

 $\phi Pn_r := 0.75 \cdot F_u \cdot Ae = 156.6 \ kip > Pu_{max} = 148.32 \ kip$ OK

Slenderness (E2): $r_{min} = 1.79$ in

$$\frac{L_D}{r_{min}}$$
=59.962 < 300 OK

... Diagonal Tension Member Selected: 2L4x4x5/16

Compression Member

$$Pu_{max} := 106.27 \ kip$$

 $L_C := L_D \cdot k = 8.944 \ ft$

Table 3. Determir	ned usina T	able 4-8 from	the Steel	Construction	Manual ((SCM).
	icu using i			construction	i lanaan (

Selection	$lection \qquad Wt \phi Pnx$		ϕPny	Conn
	(plf)	(<i>kip</i>)	(kip)	
"2L4x4x3.8"	19.6	123	155	3
"2L3.5x3.5x7/16"	19.6	108	143	3

Since both weigh the same, 2L3.5x3.5x7/16 is selected.

Check self weight:

$$W := L_D \cdot Wt(1) = 0.175 \ kip$$

$$D := 1.2 \cdot W = 0.21 \ kip$$

$$NEWPu := D + Pu_{max} = 106.48 \ kip < \phi Pnx(1) = 108 \ kip \qquad \text{OK}$$

Spacing:

$$a := \frac{L_D}{Conn(1)+1} = 26.833 \ in$$

Slenderness (E2): $r_{min} \coloneqq 1.61 \ \textit{in}$,

$$\frac{L_D}{r_{min}} = 66.666 < 200$$
 OK

... Diagonal Compression Member Selected: 2L3.5x3.5x7/16

Redesign Compression Member With Selected Tension Member

Diagonal Tension Member Selected: 2L4x4x5/16

$$Pu_{max} := 106.27 \ kip$$

 $L_C := L_D \cdot k = 8.944 \ ft$

Using Table 4-8 from the SCM with member 2L4x4x5/16 and an $L_C = 9 \ ft$, the $\phi Pnx = 104 \ kip$ and $\phi Pny = 116 \ kip$. Since $\phi Pnx \le Pu_{max}$, this member cannot support the critical compression load needed and will fail.

<u>Redesign Tension Member With Selected Compression Member</u> Diagonal Compression Member Selected: 2L3.5x3.5x7/16

$$Pu_{max} \coloneqq 148.32 \ kip$$

$$MIN_{Ag} := \frac{Pu_{max}}{0.9 \cdot F_y} = 4.578 \ in^2$$

Using Table 1-15, the gross area of the 2L3.5x3.5x7/16 member is $Ag = 5.78 \ in^2$. Since $Ag \ge MIN_{Ag}$, this member will be <u>adequate</u> for OK supporting the critical tension load.

... Diagonal Chord Member Selected: 2L3.5x3.5x7/16

Deflections

The truss may not exceed a snow load deflection of greater than L/240.

 $L \coloneqq 64 \ ft$

 $Def_{snow} \coloneqq 0.99294$ in

$$\frac{L}{240} = 3.2 \text{ in } > Def_{snow} = 0.99294 \text{ in } OK$$

Member ID	Governing LLC	Member Length (ft)	Type (T ens/ C omp)	Pu (kips)	Member Selected	φPn (kips)	# Int Conn. (if any)	Supplier
T1	3.1.2D+1.6S		C	-129.7	7 7 3	302	2	GERDAU AMERISTEEL
T2	3.1.2D+1.6S		С	-129.7		302	2	GERDAU AMERISTEEL
T3	3.1.2D+1.6S	1	C	-278.3		302	2	GERDAU AMERISTEEL
T4	3. 1.2D+1.6S		C	-278.3	21 64641/2	302	2	GERDAU AMERISTEEL
T5	3.1.2D+1.6S		C	-278.3		302	2	GERDAU AMERISTEEL
T6	3.1.2D+1.6S]	C	-278.3		302	2	GERDAU AMERISTEEL
T7	3. 1.2D+1.6S		C	-129.7		302	2	GERDAU AMERISTEEL
T8	3.1.2D+1.6S		C	-129.7		302	2	GERDAU AMERISTEEL
D1	3. 1.2D+1.6S		Т	145		108	3	GERDAU AMERISTEEL
D2	3. 1.2D+1.6S	1	C	-103.9		108	3	GERDAU AMERISTEEL
D3	3. 1.2D+1.6S	1	Т	62.4		108	3	GERDAU AMERISTEEL
D4	3. 1.2D+1.6S	0 0 4 4 2	C	-20.8		108	3	GERDAU AMERISTEEL
D5	3. 1.2D+1.6S	8.9443	C	-20.8	ZL3.5X3.5X//10	108	3	GERDAU AMERISTEEL
D6	3. 1.2D+1.6S		Т	62.4		108	3	GERDAU AMERISTEEL
D7	3. 1.2D+1.6S		C	-103.9		108	3	GERDAU AMERISTEEL
D8	3. 1.2D+1.6S		Т	145		108	3	GERDAU AMERISTEEL
V1	3. 1.2D+1.6S		C	-18		21.5	3	GERDAU AMERISTEEL
V2	3. 1.2D+1.6S		C	-0.37		21.5	3	GERDAU AMERISTEEL
V3	3. 1.2D+1.6S		C	-18		21.5	3	GERDAU AMERISTEEL
V4	3. 1.2D+1.6S	4	C	-0.37	2L2x2x1/8	21.5	3	GERDAU AMERISTEEL
V5	3. 1.2D+1.6S		C	-18		21.5	3	GERDAU AMERISTEEL
V6	3. 1.2D+1.6S		C	-0.37		21.5	3	GERDAU AMERISTEEL
V7	3. 1.2D+1.6S		C	-18		21.5	3	GERDAU AMERISTEEL
B1	3. 1.2D+1.6S		Т	222.6		353.16	N/A	GERDAU AMERISTEEL
B2	3. 1.2D+1.6S		Т	222.6		353.16	N/A	GERDAU AMERISTEEL
B3	3. 1.2D+1.6S		Т	296.9	21 4 4 4 2 / 4	353.16	N/A	GERDAU AMERISTEEL
B4	3. 1.2D+1.6S		Т	296.9	2L4X4X3/4	353.16	N/A	GERDAU AMERISTEEL
B5	3. 1.2D+1.6S		Т	222.6		353.16	N/A	GERDAU AMERISTEEL
B6	3.1.2D+1.6S		Т	222.6		353.16	N/A	GERDAU AMERISTEEL

Table 2 - Truss Member Schedule